
Содержание

1. ОСНОВНЫЕ ДАННЫЕ ПРИВОДНОЙ ГРУППЫ	2
1.1. Конструкция устройства	
2. ТЕХНИЧЕСКИЕ ПАРАМЕТРЫ	3
21. Конструкция22. Рабочие параметры	3
3. УСТАНОВКА И КОНФИГУРАЦИЯ ПРИВОДНОЙ ГРУППЫ В СИСТЕМЕ АВТОМАТИКИ VTS	4
3.1. Схема электрических цепей приводной группы теплообменника	5 5
4. УСТАНОВКА И КОНФИГУРАЦИЯ ПРИВОДНОЙ ГРУППЫ В ЛЮБОЙ СИСТЕМЕ АВТОМАТИКИ	6
4.1. Схема электрических цепей приводной группы теплообменника 4.2. Управление приводной группой теплообменника 4.3. Примерная конфигурация вариатора	7 7
5. РЕКОМЕНДАЦИИ ПО УСТАНОВКЕ	9
5.1. Рекомендуемые типы кабелей	9

Ventus

1. ОСНОВНЫЕ ДАННЫЕ ПРИВОДНОЙ ГРУППЫ

1.1. Конструкция устройства

Функции приводной группы теплообменника:

Получение энергии от выдуваемого воздуха.

Диапазон совместимости:

Приводная группа является составной частью каждого вращающегося теплообменника, поставляемого компанией VTS.

Основные элементы:

- 1. частотный вариатор
- 2. ротор теплообменника
- 3. ременная передача роторного привода
- 4. используемые кабели приводной группы
- 5. моторедуктор асинхронный двигатель, совмещенный с угловым редуктором

1.2. Описание работы устройства

Приводная группа обеспечивает запуск и плавную регулировку оборотов теплообменника в диапазоне от 3 до 10 оборотов в минуту. Регулировка скорости вращения ротора производится путем изменения частоты тока, питающего двигатель.

Кроме того, с помощью широкого диапазона функций частотного вариатора обеспечивается возможность подробного мониторинга рабочих параметров приводной группы.

2. ТЕХНИЧЕСКИЕ ПАРАМЕТРЫ

2.1. Конструкция

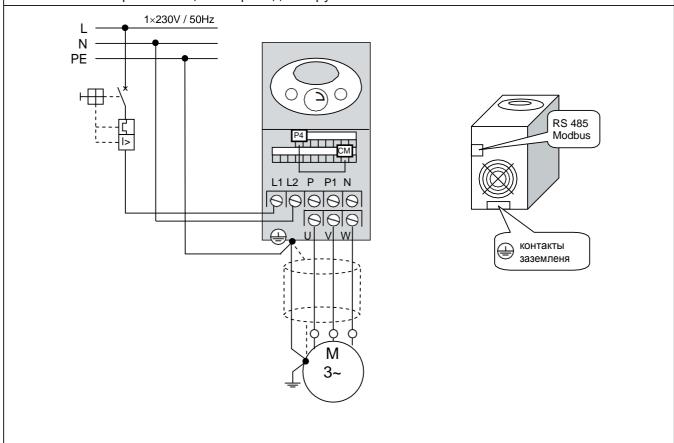
Изменяемая приводная группа с асинхронным моторедуктором и ременной передачей.

отдельные элементы размещены внутри корпуса вращающегося теплообменника в специально приспособленных для них местах

2.2. Рабочие параметры

система	TN
номинальное напряжение питания U ₃	1x(200-230)B ±10%
номинальная частота	50-60 Гц ±5%
уровень защиты после установки в кондиционер VTS	IP54
допустимая рабочая температура	0 ÷ 50°C
напряжение цепей управления вариатора	24 В пост. тока
Электромагнитное поле	1

2.3. Номинальные значения отдельных элементов привода


данные у	становки	данные дв	игател	Я			Į.	данные вариа	тора							
Размер установки	диаметр ротора тепло- обменника	Тип	Pn	Un	In	тип	Un	I _п (первичная сторона)	I _п (вторичная сторона)	f _{мин}	f макс					
	[MM]		[кВт.]	[B]	[A]		[B]	[A]	[A]	[Гц]	[Гц]					
21	750	LF 56 / 4B-11	0.06		0.45					16	55					
30	785	LF 56 / 4B-11	0.06	1	0.45					17	58					
40	995	LF 56 / 4B-11	0.06		0.45				Ì	l		 -				16
55	1165	LF 56 / 4B-11	0.18		1.05					15	51					
75	1305	LF 56 / 4B-11	0.18		1.05	0) (00 4:05				15	51					
100	1485	LF 63 / 4B-7	0.18		1.05	SV004iC5- 1F-MOD				16	54					
120	1680	LF 63 / 4B-7	0.18	3x230	1.05	Made by	1x230	5,5	2,5	16	52					
150	1870	LF 63 / 4B-7	0.18		1.05	LSiS (LG)	18230	1X230	18230	5,5	5,5	5,5	2,5	15	51	
180	1870	LF 63 / 4B-7	0.18		1.05						15	51				
230	2240	M7 1B4 TERM	0.37		2,1						15	51				
300	2335	M7 1B4 TERM	0.37		2,1							16	53			
400	2750	M7 1B4 TERM	0.37		2,1					17	56					
500	3250	M7 1B4 TERM	0.37		2,1					1			16	53		
650	3365	M7 1B4 TERM	0.37		2,1					16	55					

3. УСТАНОВКА И КОНФИГУРАЦИЯ ПРИВОДНОЙ ГРУППЫ В СИСТЕМЕ АВТОМАТИКИ VTS

- ! Внимание ! Опасно, высокое напряжение!
- Вариатор подключать в выключенном состоянии.
- Предохранять электроцепь от случайного включения.
- Заземлить.
- Находящиеся рядом устройства под напряжением обязательно отгородить.
- Все работы установка, запуск, обслуживание должны производиться обученным в данной сфере, ответственным и квалифицированным персоналом.
- При установке следует обратить внимание на статическое напряжение.
- Кабели управления должны быть подключены таким образом, чтобы избежать влияния электромагнитного поля на функции автоматики.
- Колебания номинального напряжения питания сети должны соответствовать требованиям, указанным в технических параметрах. В противном случае могут возникнуть помехи в работе устройства или аварийные ситуации.
- После выключения частотного вариатора на приводных контактах и контактах питания может возникать опасное напряжение от заряженных конденсаторов. Следует использовать предупреждающие таблички.

3.1. Схема электрических цепей приводной группы теплообменника

Для выполнения требований по электромагнитной совместимости экран кабеля питания двигателя должен быть заземлен с двух сторон - со стороны двигателя и со стороны частотного вариатора.

3.2. Подключение питания и управления приводной группы теплообменника

Блоки управления в устройствах VTS типов VS 21-150 CG ACX36-2 подготовлены к непосредственному подключению приводной группы теплообменника. Эти блоки управления в стандартной комплектации имеют соответствующие предохранители и контакты для подключения и управления теплообменником.

Если интерфейс пользователя VS 00 HMI Advanced подключен к устройству управления, то параметры трансформатора можно сконфигурировать с помощью опции Converter programming (Программирование трансформатора) на вкладке Advanced (Дополнительно).

Способ подключения питания приводной группы к блоку управления VTS содержится в электросхеме блока управления.

Способ подключения коммуникационной линии к управлению теплообменника содержится в схеме подключения автоматики, поставляемой вместе с блоком управления.

3.3. Конфигурация вариатора

№ п.п.	Наименование параметра	Код параметра	Значение по у	молчанию				
1	Время ускорения	ACC	30,0					
2	Время торможения	dEC	30,0					
3	Метод управления вариатором	Drv		3				
4	Метод установления частоты	Frq		8				
5	Базовая частота (номинальная двигателя)	F22		50,00				
6	Тип характеристики U/f	F30		0				
7	Тепловая защита двигателя	F50		1				
	размер установки		21-40	55-180	200-650			
8	Количество полюсов двигателя	H31	4	4	4			
9	Номинальное проскальзывание двигателя	H32	5,00	4,00	4,33			
10	Номинальный ток двигателя	H33	0,4	1,0	2,1			
11	Ток холостого хода	H34	0,3	0,8	1,5			
12	Порядок управления моментом	H40		0				
13	Функция бинарного входа Р4	123	19					
14	Адрес Modbus	160	4					
15	Реакция на ослабление сигнала	162	2					
16	Время задержки сигнала	163	20,0					
17	Автоматическая настройка параметров	H41	1					

После включения функции автоматической настройки параметров дождитесь изменения показаний дисплея трансформатора с TUn на H41. Продолжительность автоматической настройки составляет 1 минуту

3.4. Защита двигателя

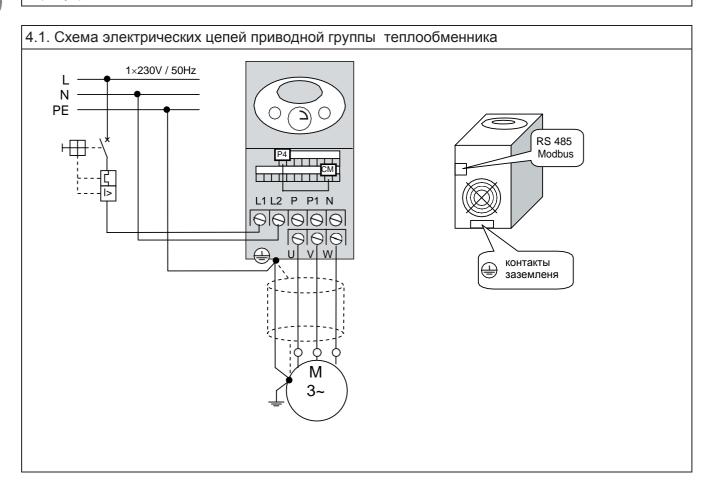
لبا

Защита двигателя от перегрузки реализована двумя способами. Преобразователь частоты оснащен числовым алгоритмом, который вычисляет время и значение перегрузки двигателя по току (i²t интеграл)

Если вариатор подтверждает перегрузку, то двигатель выключается и включается аварийная сигнализация.

Дополнительная защита состоит в наличии встроенного теплового реле, которое размыкает контур управления по Р4 входу преобразователя частоты в случае перегрева, после чего выключается двигатель и выдается сигнал аварии:

EtB


Для сброса аварии необходимо отключить и заново подать питание на преобразователь.

После каждого подобного случая следует подождать 20 минут до следующего включения привода теплообменника. Это время необходимо для охлаждения двигателя. Немедленное включение может привести к повреждению двигателя!

4. УСТАНОВКА И КОНФИГУРАЦИЯ ПРИВОДНОЙ ГРУППЫ В ЛЮБОЙ СИСТЕМЕ АВТОМАТИКИ

- ! ВНИМАНИЕ! Опасно, высокое напряжение!
- Вариатор подключать в выключенном состоянии.
- Предохранять электроцепь от случайного включения.
- Заземлить
- Находящиеся рядом устройства под напряжением обязательно отгородить.
- Все работы установка, запуск, обслуживание должны производиться обученным в данной сфере, ответственным и квалифицированным персоналом.
- При установке следует обратить внимание на статическое напряжение.
- Кабели управления должны быть подключены таким образом, чтобы избежать влияния электромагнитного поля на функции автоматики.
- Колебания номинального напряжения питания сети должны соответствовать требованиям, указанным в технических параметрах. В противном случае могут возникнуть помехи в работе устройства или аварийные ситуации.
- После выключения частотного вариатора на приводных контактах и контактах питания может возникать опасное напряжение от заряженных конденсаторов. Следует использовать предупреждающие таблички.

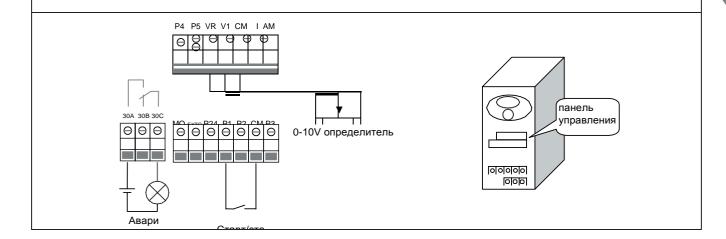
Для выполнения требований по электромагнитной совместимости экран кабеля питания двигателя должен быть заземлен с двух сторон - со стороны двигателя и со стороны частотного вариатора.

Рекомендуется защита схемы питания частотного вариатора:

- 1. выключатель встроенный тип В6
- 2. предохранительная вставка тип Gg6

4.2. Управление приводной группой теплообменника

Широкий диапазон функций преобразователя частоты позволяет адаптировать привод рекуператора к различным пользовательским задачам. Особенности преобразователя iC5:


- 1. 5 двойных входов управления, напр. старт / стоп / выбор скорости работы (1 из 7)
- 2. вход для установления рабочей частоты
- 3. два двойных выхода транзисторный и релейный
- 4. Интерфейс связи RS485 с протоколом Modbus, позволяющий осуществлять полный контроль рекуператора

4.3. Примерная конфигурация вариатора

Описание работы:

- 1. установка частоты через аналоговый вход
- 2. Команда Старт/Стоп при помощи входа с двумя состояниями
- 3. аварийная сигнализация через универсальный релейный вход

Схема соединений на панели управления вариатора

Ventus

№ п.п	Наименование параметра	Код параметра	Зна	Значение														
1	Время ускорения	ACC		30,0														
2	Время торможения	dEC							3	0,0								
3	Метод управления вариатором	Drv								1								
4	Метод установления частоты	Frq								3								
5	Базовая частота (номинальная двигателя)	F22							50	0,00								
6	Тип характеристики U/f	F30								0								
7	Тепловая защита двигателя	F50								1								
	размер установки			21-40 75-			-180	80			200-650							
8	Количество полюсов двигателя	H31		4			4				4							
9	Номинальное проскальзывание двигателя	H32		5,0	00		4,00				4,33							
10	Номинальный ток двигателя	H33		0,4			1,0				2,1							
11	Ток холостого хода	H34	0,3				0,8					1,5						
12	Порядок управления моментом	H40		0														
13	Функция бинарного входа Р4	123		19														
14	Фильтр входа V1	16		1														
15	Определение размера входа V1 - ми	17		1														
	размер установки		21	30	40	55	75	100	120	150	180	230	300	400	500	650		
16	Определение размера частоты - мин	18	16	17	16	15	15	16	16	15	15	15	16	17	16	16		
17	Определение размера V1 - макс	19	9															
	размер установки		21	30	40	55	75	100	120	150	180	230	300	400	500	650		
18	Определение размера частоты - макс	I10	55	58	52	51	51	54	52	51	51	51	53	56	53	55		
19	Автоматическая настройка параметров	H41								1								

После включения функции автоматической настройки параметров дождитесь изменения показаний дисплея трансформатора с TUn на H41. Продолжительность автоматической настройки составляет 1

4.4. Защита двигателя

Į.

Защита двигателя от перегрузки реализована двумя способами. с помощью цифрового алгоритма в частотном вариаторе, который сравнивает время и значение превышения тока двигателя (целиком u^2t).

Если вариатор подтверждает перегрузку, то двигатель выключается и включается аварийная сигнализация.

EtH

Дополнительная защита состоит в наличии встроенного теплового реле, которое размыкает контур управления по P4 входу преобразователя частоты в случае перегрева, после чего выключается двигатель и выдается сигнал аварии:

EtB

Для сброса аварии необходимо отключить и заново подать питание на преобразователь.

После каждого подобного случая следует подождать 20 минут до следующего включения привода теплообменника. Это время необходимо для охлаждения двигателя. Немедленное включение может привести к повреждению двигателя!

5. РЕКОМЕНДАЦИИ ПО УСТАНОВКЕ

5.1. Рекомендуемь	е типы кабелей		
Размер, назначение	Список	Параметры	Эскиз
3х1,5 мм² кабель питания вариатора	Многожильные кабели с медными цельными или многожильными проводами с изоляцией PCV.	Номинальное напряжение: 450/ 750В Рабочая температура: -40 до 70°С	
1х1 мм2 lub 2х1 мм² цепи управления	Кабели управления с медными жилами, экранированные медным проводом с изоляцией из PCV.	Номинальное напряжение: 300/500 В Рабочая температура: от -40 до 70°C	
жгут UTP или STP, 2x2x24 AWG (2 пары) последовательная коммуникация	Медные, многожильные кабели с одно- или многожильными проводами с изоляцией из PCV или PE; жилы скручены парами для минимизации помех; кроме типа UTP - с дополнительным экраном;	Рабочая температура: от -20 до 60°C	UTP T
	Сечения проводов подобраны с расчетом напр схеме для трех жил. Учитывая различные вар и способ укладки кабелей, а также токи корот соответствующим образом подобрать сечен таблице	ианты защиты, длин пкого замыкания, сле	ну дует